Quantum states are relative to observers!

… and this is important for quantum networks

LINCS reading group "Network Theory" Ludovic Noirie 2024/10/04

NO<IA I ARS

Quantum states are relative to observers! Pseudo-paradoxes in quantum physics

Some pseudo-paradoxes in quantum physics

- Schrödinger's cat: dead and alive at the same time?
- Einstein-Podolsky-Rosen (EPR) dilemma: spooky action at distance?
	- Measuring an entangled qubit in one location instantaneously changes its state of the other qubit in another location

Misunderstanding of what is a quantum state leads to wrong statements

- Special relativity is wrong because of the EPR "paradox"?
	- Special relativity (and general relativity) has always been true since 1905 (resp., since 1916)…
- Transmission of "information" faster than light with entanglement?
	- In contradiction with the no-go theorem about "no-faster-than-light signaling" in quantum physics...
	- Quantum physics has always been true since years 1920s…
- The so-called "measurement problem" in quantum physics?
	- Still an open question in quantum physics, but a better understanding of what is a quantum state should help…

What is a quantum state?

Quantum states are relative to observers! Some mathematical notations

Dirac notation ("bra-ket" notation)

- See https://fr.wikipedia.org/wiki/Notation_bra-ket
- Quantum state $\psi =$ line (ray) in Hilbert space $V = \mathbb{C}^d$ (N qubits: $d = 2^N$)
- Vector representing quantum state $\psi: |\psi\rangle \in V$ ("ket")
- Corresponding "bra": $\{\psi | \in dual(V)\}$
	- Rule: $\lambda |\varphi\rangle + \mu |\psi\rangle \leftrightarrow \lambda^* \langle \varphi | + \mu^* \langle \psi |$
- Hermitian product (~ scalar product in Euclidian space): $\langle \varphi | \psi \rangle = \langle \varphi | \cdot | \psi \rangle = \langle \psi | \varphi \rangle^*$

 $\lambda|\varphi\rangle + \mu|\psi\rangle$ | $(\lambda'|\varphi'\rangle + \mu'|\psi'\rangle$)) = $(\lambda^* \langle \varphi | + \mu^* \langle \psi |) \cdot (\lambda'|\varphi'\rangle + \mu'|\psi'\rangle)$ = $\lambda^{\star}\lambda' \langle \varphi | \varphi' \rangle + \lambda^{\star}\mu' \langle \varphi | \psi' \rangle + \mu^{\star}\lambda' \langle \psi | \varphi' \rangle + \mu^{\star}\mu' \langle \psi | \psi' \rangle$

- Linear operators: $\sum c_k |\psi_k\rangle\langle\varphi_k|$, with $|\psi_k\rangle\langle\varphi_k| \chi\rangle = |\psi_k\rangle\langle\varphi_k| \chi\rangle = \langle\varphi_k| \chi\rangle \cdot |\psi_k\rangle$
- Orthogonal projector on a state $\psi : |\psi\rangle\langle\psi|$ with $\langle\psi|\psi\rangle = 1$
	- $|\psi\rangle\langle\psi||\psi\rangle = \langle\psi|\psi\rangle \cdot |\psi\rangle = |\psi\rangle$
	- $\forall |\varphi\rangle \in V$ such as $\langle \psi | \varphi \rangle = 0$, i.e., $|\varphi\rangle \perp |\psi\rangle$, $|\psi\rangle \langle \psi| |\varphi\rangle = \langle \psi | \varphi \rangle \cdot |\psi\rangle = 0 \cdot |\psi\rangle = 0$

Quantum states are relative to observers! Qubits: bases, Bloch sphere

States in quantum physics (mathematical modeling)

- A quantum state ψ can be represented by a vector in a complex Hilbert space: $|\psi\rangle \in V$ ("ket"), up to normalization factor $\langle \varphi | \varphi \rangle = 1$ and a global phase factor, i.e., $| \varphi \rangle \cong e^{i\alpha} | \varphi \rangle$
- $\cdot \psi =$ line (ray) in the Hilbert space: the set of quantum states is the projective space P(V)

Qubits = lines in a Hilbert space V with $\dim(V) = 2$

- Quantum state ψ : $|\psi\rangle = (e^{i\alpha}) \cdot (\cos{\frac{\theta}{2}})$ $\frac{\theta}{2}$ |0) + $e^{i\varphi}$ sin $\frac{\theta}{2}$ |1) with $\theta \in [0, \pi]$ and $\varphi \in [0, 2\pi[$
- Some bases (orthonormal bases):
	- Computational basis $(0), (1)$ on the z axis
	- Basis $(|+\rangle, |-\rangle)$ on the *x* axis with $|+\rangle = \frac{1}{4}$ $\frac{1}{2}(|0\rangle + |1\rangle)$ and $|-\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|0\rangle - |1\rangle)$
	- Basis $(|+i\rangle, |-i\rangle)$ on the *y* axis with $|+i\rangle = \frac{1}{i}$ $\frac{1}{2}(|0\rangle + i|1\rangle)$ and $|-i\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|0\rangle - i|1\rangle)$

Quantum states are relative to observers! Qubits: orthogonal state

Qubit state ψ represented by the vector $|\psi\rangle = \cos\frac{\theta}{\alpha}$ $\frac{\theta}{2}$ |0) + $e^{i\varphi}$ sin $\frac{\theta}{2}$ |1)

Its "orthogonal state" ψ^{\perp} can be represented by the vector:

$$
|\psi^{\perp}\rangle = e^{i\beta} \cdot \left(-e^{-i\varphi} \sin\frac{\theta}{2} |0\rangle + \cos\frac{\theta}{2} |1\rangle \right) = e^{i(\beta - \varphi + \pi)} \cdot \left(\cos\frac{\pi - \theta}{2} |0\rangle + e^{i(\varphi - \pi)} \sin\frac{\pi - \theta}{2} |1\rangle \right)
$$

such as $(\ket{\psi}, \ket{\psi^\perp})$ is another basis of V:

- Computational basis : $\langle 0 | 0 \rangle = \langle 1 | 1 \rangle = 1$ and $\langle 0 | 1 \rangle = \langle 1 | 0 \rangle = 0$
- \cdot $\langle \psi | \psi \rangle = \left(\cos \frac{\theta}{2} \right)$ $\frac{\theta}{2}$ |0) + $e^{i\varphi}$ sin $\frac{\theta}{2}$ |1) $\cos \frac{\theta}{2}$ $\frac{\theta}{2}$ |0) + $e^{i\varphi}$ sin $\frac{\theta}{2}$ |1) = cos² $\frac{\theta}{2}$ + $e^{-i\varphi}e^{i\varphi}$ sin² $\frac{\theta}{2}$ = 1

$$
\cdot \quad \langle \psi^{\perp} | \psi^{\perp} \rangle = e^{-i\beta} e^{i\beta} \left\langle -e^{-i\varphi} \sin \frac{\theta}{2} | 0 \rangle + \cos \frac{\theta}{2} | 1 \rangle \right| - e^{-i\varphi} \sin \frac{\theta}{2} | 0 \rangle + \cos \frac{\theta}{2} | 1 \rangle \Big\rangle = e^{+i\varphi} e^{-i\varphi} \sin^2 \frac{\theta}{2} + \cos^2 \frac{\theta}{2} = 1
$$

$$
\cdot \quad \langle \psi^{\perp} | \psi \rangle = \left\langle -e^{-i\varphi} \sin \frac{\theta}{2} | 0 \rangle + \cos \frac{\theta}{2} | 1 \rangle \right| \cos \frac{\theta}{2} | 0 \rangle + e^{i\varphi} \sin \frac{\theta}{2} | 1 \rangle \Big\rangle = -e^{+i\varphi} \sin \frac{\theta}{2} \cos \frac{\theta}{2} + \cos \frac{\theta}{2} e^{i\varphi} \sin \frac{\theta}{2} = 0
$$

 $\pi -$

Quantum states are relative to observers! Qubits: orthogonal state – Basis transformations

Computational basis $(|\psi\rangle, |\psi^{\perp}\rangle)$ in the basis $(|0\rangle, |1\rangle)$: $|\psi\rangle = \cos\frac{\theta}{2}$ $\frac{\theta}{2}$ |0) + $e^{i\varphi}$ sin $\frac{\theta}{2}$ |1) (1) $|\psi^{\perp}\rangle = e^{i\beta} \cdot \left(-e^{-i\varphi}\sin\frac{\theta}{2}|0\rangle + \cos\frac{\theta}{2}\right)$ $\frac{1}{2}$ (1) (2)

Computational basis ($|0\rangle$, $|1\rangle$) in the basis ($|\psi\rangle$, $|\psi^{\perp}\rangle$):

For
$$
e^{i\beta} = 1
$$
 (10) $|+ \rangle = \frac{1}{\sqrt{2}}(|0\rangle + |1\rangle)$
\n5.
\n
\n $|-\frac{1}{\sqrt{2}}\rangle$
\n $|-\frac{1}{\sqrt{2}}$

$$
\left(\cos\frac{\theta}{2}\right) \times \left(\mathbf{1}\right) \implies \cos\frac{\theta}{2} \left|\psi\right\rangle = \cos^2\frac{\theta}{2} \left|0\right\rangle + \cos\frac{\theta}{2} e^{i\varphi} \sin\frac{\theta}{2} \left|1\right\rangle \tag{3}
$$

$$
-e^{-i\beta}e^{i\varphi}\sin\frac{\theta}{2}\big) \times (2) \implies -e^{-i\beta}e^{i\varphi}\sin\frac{\theta}{2}|\psi^{\perp}\rangle = \sin^2\frac{\theta}{2}|0\rangle - e^{i\varphi}\sin\frac{\theta}{2}\cos\frac{\theta}{2}|1\rangle \tag{4}
$$

$$
(3) + (4) \implies |0\rangle = \cos\frac{\theta}{2}|\psi\rangle - e^{-i\beta}e^{i\varphi}\sin\frac{\theta}{2}|\psi^{\perp}\rangle \tag{1'}
$$

$$
\left(e^{-i\varphi}\sin\frac{\theta}{2}\right)\times\mathbf{(1)}\implies e^{-i\varphi}\sin\frac{\theta}{2}\left|\psi\right\rangle=e^{-i\varphi}\sin\frac{\theta}{2}\cos\frac{\theta}{2}\left|0\right\rangle+\sin^2\frac{\theta}{2}\left|1\right\rangle\tag{5}
$$

$$
e^{-i\beta}\cos\frac{\theta}{2}\big)\times(2)\implies e^{-i\beta}\cos\frac{\theta}{2}\,|\psi^{\perp}\rangle=-\cos\frac{\theta}{2}\,e^{-i\varphi}\sin\frac{\theta}{2}\,|0\rangle+\cos^2\frac{\theta}{2}\,|1\rangle
$$

$$
(5) + (6) \Rightarrow |1\rangle = e^{-i\varphi} \sin{\frac{\theta}{2}} |\psi\rangle + e^{-i\beta} \cos{\frac{\theta}{2}} |\psi^{\perp}\rangle
$$
 (2')

NO<12

 (6)

Quantum states are relative to observers! Qubits: observables, measurement

Observables on qubits:

- $\cdot~~$ $\forall c\in V$, $M_{\psi, \lambda_\psi, \lambda_{\psi^\perp}} = \lambda_\psi |\psi \rangle \langle \psi | + \lambda_{\psi^\perp} |\psi^\perp \rangle \langle \psi^\perp |$ with $\lambda_\psi \in \mathbb{R}$ and $\lambda_{\psi^\perp} \in \mathbb{R} \setminus \{ \lambda_\psi \}$
- Spin observable: $S_\psi = \frac{\hbar}{2}$ $\frac{n}{2}(|\psi\rangle\langle\psi|-|\psi^{\perp}\rangle\langle\psi^{\perp}|)$

Measurement with observable $M_{\psi, \lambda_{\psi}, \lambda_{\eta, \perp}}$

- State before measurement: $\ket{\chi} = \cos \frac{\theta}{\pi}$ $\frac{\theta}{2}|\psi\rangle + e^{i\varphi}\sin\frac{\theta}{2}|\psi^{\perp}\rangle$
- Measured values and final states:
	- λ_{ψ} with probability $p_{\chi \to \psi} = \langle \chi | \psi \rangle \langle \psi | \chi \rangle = \cos^2 \frac{\theta}{2}$ and final state $|\psi \rangle$
		- With $|\chi\to\psi\rangle=|\psi\rangle\langle\psi||\chi\rangle=\langle\psi|\chi\rangle|\psi\rangle$, $p_{\chi\to\psi}=\langle\chi\to\psi|\chi\to\psi\rangle$ and final state $\frac{1}{\sqrt{p_{\chi\to\psi}}}| \chi\to\psi\rangle$
	- λ_{ψ^\perp} with probability $p_{\chi\to\psi^\perp}=\langle\chi|\psi^\perp\rangle\langle\psi^\perp|\chi\rangle=\sin^2\frac{\theta}{2}$ and final state $|\psi^\perp\rangle$ 2
		- With $|\chi\to\psi^\perp\rangle=|\psi^\perp\rangle\langle\psi^\perp| |\chi\rangle=\langle\psi^\perp|\chi\rangle|\psi^\perp\rangle$, $p_{\chi\to\psi}=\langle\chi\to\psi^\perp|\chi\to\psi^\perp\rangle$ and final state $\frac{1}{\sqrt{2\pi}}$ $\overline{p}_{\chi \to \psi^{\perp}}$ $|\chi \rightarrow \psi^{\perp} \rangle$

Quantum states are relative to observers! Pairs of qubits and entanglement: the 4 Bell states

Pair of qubits:

- $Vect(\mathbb{C}^2 \times \mathbb{C}^2) = \mathbb{C}^2 \otimes \mathbb{C}^2 = \mathbb{C}^4$
- Computational basis: $\{|0\rangle, |1\rangle\} \times \{|0\rangle, |1\rangle\} = \{|0\rangle \otimes |0\rangle, |0\rangle \otimes |1\rangle, |1\rangle \otimes |0\rangle, |1\rangle \otimes |1\rangle\}$
- Some other bases: { $|\varphi\rangle$, $|\varphi^{\perp}\rangle$ } \times { $|\psi\rangle$, $|\psi^{\perp}\rangle$ } = { $|\varphi\rangle\otimes|\psi\rangle$, $|\varphi\rangle\otimes|\psi^{\perp}\rangle$, $|\varphi^{\perp}\rangle\otimes|\psi^{\perp}\rangle$
- Another basis: the 4 Bell states $BSB = \{|\Phi^+\rangle, |\Phi^-\rangle, |\Psi^+\rangle, |\Psi^-\rangle$
	- $|\Phi^+\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|0\rangle \otimes |0\rangle + |1\rangle \otimes |1\rangle$
	- $|\Phi^-\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|0\rangle \otimes |0\rangle - |1\rangle \otimes |1\rangle$
	- $|\Psi^+\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|0\rangle \otimes |1\rangle + |1\rangle \otimes |0\rangle$
	- $|\Psi^{-}\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|0\rangle \otimes |1\rangle - |1\rangle \otimes |0\rangle$
	- One can prove that $\forall \Phi \in BSB$, $\forall \varphi \in \mathbb{C}^2$, $\forall \psi \in \mathbb{C}^2$, $|\Phi \rangle \neq |\varphi \rangle \otimes |\psi \rangle$
	- $\Phi \in BSB$ is a (maximally) entangled state for a pair of qubits

Quantum states are relative to observers! Entanglement: $|\Psi^{-}\rangle$ Bell state symmetry

"Central symmetry" of the bell state $|\Psi^{-}\rangle$

- Bell state $|\Psi^{-}\rangle$: $|\Psi^{-}\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|0\rangle \otimes |1\rangle - |1\rangle \otimes |0\rangle$
- Computational basis ($|0\rangle$, $|1\rangle$) in the basis ($|\psi\rangle$, $|\psi^{\perp}\rangle$):

$$
|0\rangle = \cos\frac{\theta}{2}|\psi\rangle - e^{-i\beta}e^{i\varphi}\sin\frac{\theta}{2}|\psi^{\perp}\rangle
$$
 (1')

$$
|1\rangle = e^{-i\varphi}\sin\frac{\theta}{2}|\psi\rangle + e^{-i\beta}\cos\frac{\theta}{2}|\psi^{\perp}\rangle
$$
 (2')

• Computational basis ($|0\rangle$, $|1\rangle$) in the basis ($|\psi\rangle$, $|\psi^{\perp}\rangle$):

$$
|\Psi^{-}\rangle = \frac{1}{\sqrt{2}} \Big(\cos\frac{\theta}{2} |\psi\rangle - e^{-i\beta} e^{i\varphi} \sin\frac{\theta}{2} |\psi^{\perp}\rangle \Big) \otimes \Big(e^{-i\varphi} \sin\frac{\theta}{2} |\psi\rangle + e^{-i\beta} \cos\frac{\theta}{2} |\psi^{\perp}\rangle \Big) - \frac{1}{\sqrt{2}} \Big(e^{-i\varphi} \sin\frac{\theta}{2} |\psi\rangle + e^{-i\beta} \cos\frac{\theta}{2} |\psi^{\perp}\rangle \Big) \otimes \Big(\cos\frac{\theta}{2} |\psi\rangle - e^{-i\beta} e^{i\varphi} \sin\frac{\theta}{2} |\psi^{\perp}\rangle \Big) = 0 \cdot |\psi\rangle \otimes |\psi\rangle + \frac{e^{-i\beta} \Big(\cos^2\frac{\theta}{2} + \sin^2\frac{\theta}{2} \Big)}{\sqrt{2}} |\psi\rangle \otimes |\psi^{\perp}\rangle - \frac{e^{-i\beta} \Big(\sin^2\frac{\theta}{2} + \cos^2\frac{\theta}{2} \Big)}{\sqrt{2}} |\psi^{\perp}\rangle \otimes |\psi\rangle + 0 \cdot |\psi^{\perp}\rangle \otimes |\psi^{\perp}\rangle
$$

• Choice $e^{-i\beta} = 1 \Rightarrow \forall \psi \in P(\mathbb{C}^2)$, $|\Psi^{-}\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|\psi\rangle \otimes |\psi^{\perp}\rangle - |\psi^{\perp}\rangle \otimes |\psi\rangle$

Quantum states are relative to observers! Entanglement: $|\Psi^{-}\rangle$ Bell state measurements

State before measurement: $|\Psi^-\rangle = \frac{1}{\beta}$ $\frac{1}{2} (\ket{\varphi} \otimes \ket{\varphi^{\bot}} - \ket{\varphi^{\bot}} \otimes \ket{\varphi}) = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|\psi\rangle \otimes |\psi^{\perp}\rangle - |\psi^{\perp}\rangle \otimes |\psi\rangle$ Measurement of the 1st qubit in state $\varphi \in P(\mathbb{C}^2)$:

- $\cdot \quad |\Psi^{-} \rightarrow \varphi \otimes ? \rangle = (|\varphi\rangle\langle \varphi| \otimes Id_{2})|\Psi^{-}\rangle = \frac{1}{\sqrt{2}}$ $\frac{1}{2}(|\varphi \rangle \langle \varphi || \varphi \rangle \otimes |\varphi^{\perp} \rangle - |\varphi \rangle \langle \varphi || \varphi^{\perp} \rangle \otimes |\varphi \rangle) = \frac{1}{\sqrt{2}}$ $\frac{1}{2}|\varphi\rangle\otimes|\varphi^{\perp}\rangle$
- The <u>measured</u> state for the 1st qubit is $\ket{\varphi}$ with probability $\left(\frac{1}{\sqrt{2}}\right)$ 2 $=\frac{1}{2}$ 2
- The state of the pair after measurement is $|\varphi\rangle \otimes |\varphi^{\perp}\rangle$ (entanglement has disappeared...)
- The inferred state for the 2nd qubit is $|\varphi^{\perp}\rangle$

Measurement of the 2nd qubit in state $\psi^{\perp} \in P(\mathbb{C}^2)$:

- $\cdot \ \ |\Psi^{-}\rightarrow ?\otimes \psi^{\perp}\rangle=\left(Id_{2}\otimes |\psi^{\perp}\rangle\langle\psi^{\perp}| \right)|\Psi^{-}\rangle=\frac{1}{\sqrt{2}}$ $\frac{1}{2}\big(|\psi\rangle\otimes|\psi^{\perp}\rangle\big|\psi^{\perp}\big| |\psi^{\perp}\rangle -|\psi^{\perp}\rangle\otimes|\psi^{\perp}\rangle\big|\psi^{\perp}\big| |\psi\rangle\big) = \frac{1}{\sqrt{2}}$ $\frac{1}{2}|\psi\rangle \otimes |\psi^{\perp}\rangle$
- The <u>measured</u> state for the 2nd qubit is $\ket{\psi^\perp}$ with probability $\left(\frac{1}{\sqrt{2}}\right)$ 2 $=\frac{1}{2}$ 2
- The state of the pair after measurement is $|\psi\rangle \otimes |\psi^{\perp}\rangle$ (entanglement has disappeared...)
- The inferred state for the 1st qubit is $|\psi\rangle$

Quantum states are relative to observers!

EPR experiment: description and paradox

EPR experiment

- Pair of qubits in state $|\Psi^{-}\rangle$
- Alice (observer A) and Bob (observer B) are in different locations
	- Distance $d_{A\leftrightarrow B}$ such as $\Delta t_{A\leftrightarrow B} = \frac{d_{A\leftrightarrow B}}{c}$ $\frac{\leftrightarrow_B}{c}$ is not negligible
- Alice measure the 1st qubit in state $\varphi \in \mathrm{P}(\mathbb{C}^2)$ at time t_A in her inertial frame of reference R
	- Time t'_{A} in Bob's inertial reference frame R'
	- She received (at the speed of light) Bob's measurement outcome at time $t_{B\rightarrow A} > t_A$
	- Thus, the projected state after her measurement is $\ket{\Psi^- \to \varphi \otimes ?}_{Alice} = \frac{1}{\sqrt{2}}$ $\frac{1}{2}|\varphi\rangle\otimes|\varphi^{\perp}\rangle$
- Bob measure the 2nd qubit in state $\psi^\perp\in$ P(C²) \ { φ , φ^\perp } at time $t'{}_B$ in its inertial frame of reference R'
	- Time t_B in Alice's inertial reference frame R'
	- He received (at the speed of light) Alice's measurement outcome at time $t'_{A\rightarrow B} > t'_{B}$
	- + Thus, the projected state after his measurement is $\ket{\Psi^- \to ? \otimes \psi^\perp}_{Bob} = \frac{1}{\sqrt{2}}$ $\frac{1}{2}|\psi\rangle \otimes |\psi^{\perp}\rangle$
- Paradox = The states after their respective measurements are different: $|\varphi\rangle \otimes |\varphi^{\perp}\rangle \neq |\psi\rangle \otimes |\psi^{\perp}\rangle \Rightarrow$ Who is right, Alice or Bob?

Quantum states are relative to observers!

EPR experiment: observer-dependent time \Rightarrow observer-dependent state

Usual interpretation: Alice (or Bob) measures first and instantaneous change of remote qubit

- Special Relativity \Rightarrow time depends on the observers' inertial frames of reference R and R'
- We can choose R (resp. R') such as $t_B > t_A$, $t_B < t_A$ or even $t_B = t_A$ (resp. $t'_B > t'_A$, $t'_B < t'_A$ or $t'_B = t'_A$)
- This implies the observer-dependence of the state!

Quantum physics formalism does not care about the order of separated measurements: $Id_2\otimes |\psi^{\perp}\rangle\langle\psi^{\perp}|\big)\times (|\varphi\rangle\langle\varphi|\otimes Id_2) = (|\varphi\rangle\langle\varphi|\otimes Id_2)\times\big(Id_2\otimes |\psi^{\perp}\rangle\langle\psi^{\perp}|\big) = \big(|\varphi\rangle\langle\varphi|\otimes |\psi^{\perp}\rangle\langle\psi^{\perp}|\big)$ • The projected state of the pair of qubits for Alice after $t_{B\rightarrow A}$ is:

$$
|\Psi^-\rightarrow\varphi\otimes\psi^\perp\rangle_{Alice}=\left(Id_2\otimes|\psi^\perp\rangle\langle\psi^\perp|\right)\left(\frac{1}{\sqrt{2}}|\varphi\rangle\otimes|\varphi^\perp\rangle\right)=\frac{\langle\psi^\perp|\varphi^\perp\rangle}{\sqrt{2}}|\varphi\rangle\otimes|\psi^\perp\rangle
$$

• The projected state of the pair of qubits for Bob after $t^{\prime}_{\;A\rightarrow B}$ is:

$$
|\Psi^-\rightarrow\varphi\otimes\psi^\perp\rangle_{Bob}=\ (|\varphi\rangle\langle\varphi|\otimes Id_2)\left(\frac{1}{\sqrt{2}}|\psi\rangle\otimes|\psi^\perp\rangle\right)=\frac{\langle\varphi|\psi\rangle}{\sqrt{2}}|\varphi\rangle\otimes|\psi^\perp\rangle
$$

12 © 2023 Nokia \Rightarrow $|\Psi^{-} \rightarrow \varphi \otimes \psi^{\perp}\rangle_{Alice} = |\Psi^{-} \rightarrow \varphi \otimes \psi^{\perp}\rangle_{Bob} =$ $\varphi|\psi$ $\frac{\varphi}{2}|\varphi\rangle\otimes|\psi^{\perp}\rangle$ because one can check that $\langle \psi^{\perp} | \varphi^{\perp} \rangle = \langle \varphi | \psi \rangle$

Quantum states are relative to observers! EPR experiment: summary

EPR experiment + Special Relativity \Rightarrow Quantum states may be relative to the observer!

• Before the measurement: same state

 $|initial state\rangle_{Alice} = |initial state\rangle_{Bob} = |\Psi^{-}\rangle$

• After local measurement and before reception of other measurement outcome: different states!

$$
|\Psi^{-}\rightarrow\varphi\otimes?\rangle_{Alice}=\frac{1}{\sqrt{2}}|\varphi\rangle\otimes|\varphi^{\perp}\rangle~\neq~|\Psi^{-}\rightarrow?\otimes\psi^{\perp}\rangle_{Bob}=\frac{1}{\sqrt{2}}|\psi\rangle\otimes|\psi^{\perp}\rangle
$$

with $\psi\in P(\mathbb{C}^{2})\setminus\{\varphi,\varphi^{\perp}\}$

• After reception of other measurement outcome: same state again

$$
|\Psi^{-}\rightarrow \varphi\otimes \psi^{\perp}\rangle_{Alice} = |\Psi^{-}\rightarrow \varphi\otimes \psi^{\perp}\rangle_{Bob} = \frac{\langle \varphi|\psi\rangle}{\sqrt{2}}|\varphi\rangle\otimes |\psi^{\perp}\rangle
$$

• See Quirk circuit<https://www.ludovic-noirie.fr/QC/div/MeasurementPsi-.htm>

Quantum states are relative to observers! EPR experiment: relational interpretation of quantum physics

Carlo Rovelli's relational interpretation of quantum physics

- Carlo Rovelli, Relational Quantum Mechanics, 1996, <https://arxiv.org/abs/quant-ph/9609002>
- See also https://en.wikipedia.org/wiki/Interpretations of quantum mechanics#Relational quantum mechanics

"Quantum mechanics is a theory about the physical description of physical systems relative to other systems, and this is a complete description of the world"

NOKI2

- Quantum state = mathematical modeling of the state of knowledge of the observer on the observed system
- Quantum states are relative to observers (like time in special and general relativity)
- All systems are quantum systems (main difference with Copenhagen interpretation)
- Observation = Physical interaction = Entanglement (observer out) or Measurement (observer in)

View of Asher Peres (one of the inventors of quantum teleportation)

- Asher Peres, *Quantum information and general relativity*, 2004, <https://arxiv.org/abs/quant-ph/0405127>
- See also https://en.wikipedia.org/wiki/Asher_Peres#Views_on_the_EPR_paradox
- \cdot Ouantum state $=$ information
- When Alice measures her qubit, absolutely nothing happens at Bob's location
- Bob needs information from Alice to change his states about his qubit

Quantum states are relative to observers!

Schrödinger's cat, interactions and measurement in quantum physics

The "observed observer" (Relational Quantum Mechanics, Carlo Rovelli)

- Schrödinger's cat thought experiment: cat in a box in a superposition state "dead or/and alive"
	- System S observed by observer A inside the box
	- Same system S observed by observer B outside the box
- The state is relative to the observer in this configuration too:
	- Observer A: The cat (system S) is dead $\ket{0}_S$ or alive $\ket{1}_S$, not both...
	- Observer B: The cat and the observer A are entangled in superposition state $\frac{1}{\sqrt{2}}(\ket{0}_A\ket{0}_S+\ket{1}_A\ket{1}_S$
- Is there really a "measurement problem" in quantum physics?
	- Observation = Acquisition of information about a system by another system (by interaction)
	- **Measurement** = Interaction between two systems (S and A), the observer being one of them (A)
	- **Entanglement** = Interaction between two systems (S and A) observed by another system (B)
- Qubit $=$ smallest measurement apparatus to measure another qubit: see Quirk circuit <https://www.ludovic-noirie.fr/QC/div/MeasurementQubit.htm>

Quantum states are relative to observers! Conclusion

Quantum states may be relative to observers

- Case 1 (EPR-like): two distant observers on the same composite quantum system with two entangled components, each observer measuring one component and each component being "significantly" distant from the other
- Case 2 (the "observed observer"): a 1st observer observing a quantum system, a second observer observing the 1st observer and the observed quantum system (measurement vs. entanglement)

When is it relevant for case 1?

- Not relevant for quantum computers: single observer, qubits in the "same location" (30 cm $=$ 1 ns)
- But clearly relevant in quantum distributed systems such as quantum networks / quantum internet
	- Each node observes a qubit entangled in Bell state with another qubit of another node
	- The nodes are "significantly" distant (photon transmission in fiber: 50 km = 0.25 ms)
- This effect is important for QKD application in quantum internet: statistical detection of eavesdropper
	- See<https://www.ludovic-noirie.fr/QC/div/QKD.htm>

NOKIA L BELL
L ABS

Quantum states are relative to observers! Bloch spheres

