

Convex Optimization and Duality

François Durand

Nokia Bell Labs France

Based on the Online Course "Convex Optimization" by Stephen Boyd and the Book "Convex Optimization" by Stephen Boyd and Lieven Vandenberghe

Sources

Book:

http://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf
MOOC:

https://lagunita.stanford.edu/courses/Engineering/CVX101/Winter2014/about

- ► Theory: 8h40 + exercises.
 - Convex sets,
 - Convex functions,
 - Convex optimization problems,
 - Duality.
- ► Applications: 3h15 + exercises.
 - Approximation and fitting, Statistical estimation, Geometric problems.
- ► Algorithms: 5h15 + exercises.
 - Numerical linear algebra, Unconstrained minimization, Equality constrained minimization, Interior point methods.

Introduction

Plan

Convex Sets

Convex Functions

Optimization

Optimality Conditions

Plan

Convex Sets

Convex Functions

Optimization

Optimality Conditions

Fundamental Idea

A convex set \mathcal{C} can be fully described by its supporting hyperplanes.

Fundamental Idea

A convex set \mathcal{C} can be fully described by its supporting hyperplanes.

$$\begin{split} \phi_{\boldsymbol{\lambda}} &= \inf\{\boldsymbol{\lambda}^{T}\boldsymbol{x}, \boldsymbol{x} \in \mathcal{C}\} \\ &= \sup\{\phi \mid \forall \boldsymbol{x} \in \mathcal{C}, \boldsymbol{\lambda}^{T}\boldsymbol{x} \geq \phi\}. \end{split}$$

Fundamental Idea

1

A convex set \mathcal{C} can be fully described by its supporting hyperplanes.

$$\begin{split} \phi_{\boldsymbol{\lambda}} &= \inf\{\boldsymbol{\lambda}^{T} \boldsymbol{x}, \boldsymbol{x} \in \mathcal{C}\}\\ &= \sup\{\phi \mid \forall \boldsymbol{x} \in \mathcal{C}, \boldsymbol{\lambda}^{T} \boldsymbol{x} \geq \phi\}. \end{split}$$

What is the dual space? Example:

- ▶ x₁, x₂... in (say) kg,
- ▶ φ in (say) \$,
- ► Then $\lambda_1, \lambda_2, \dots$ in $\$.kg^{-1}$.

 $\Rightarrow \text{ It is a space of unit prices.} \\\Rightarrow \text{ If the unit prices were } \boldsymbol{\lambda} \text{, then each bundle in } \mathcal{C} \text{ would cost at least } \phi_{\boldsymbol{\lambda}} \text{.}$

Separating Hyperplanes Theorem

If two convex sets do not intersect, then they can be separated by (at least) a hyperplane.

Convex Sets

Convex Functions

Optimization

Optimality Conditions

Convex Functions $\mathbb{R}^n \to \mathbb{R}$

Definition:

- And **dom** *f* is a convex set.
- I.e. the *epigraph* of f is a convex set.

Concave: -f is convex. I.e. the *hypograph* of f is a convex set.

Affine \Leftrightarrow convex and concave.

Convex Functions $\mathbb{R}^n \to \mathbb{R}$: Differentiable Case

If differentiable:

$$f(\mathbf{y}) \geq f(\mathbf{x}) + \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}).$$

 \Rightarrow First-order Taylor gives a global underestimator.

$$\Rightarrow$$
 For example, if $oldsymbol{
abla} f(oldsymbol{x}) = oldsymbol{0}$. .

If differentiable twice: $\nabla^2 f(\mathbf{x}) \succeq 0$ (the Hessian is semidefinite positive).

Examples of Convex Functions

- ► Any norm on \mathbb{R}^n ,
- ▶ $\mathbf{x} \rightarrow \mathbf{x}^T P \mathbf{x}$, where P is semidefinite positive,
- $\blacktriangleright \ \boldsymbol{x} \to \max_i(x_i),$
- ▶ $\mathbf{x} \rightarrow \log \sum_{i} \exp(x_i)$ ("LogSumExp"),
- $\mathbf{x} \rightarrow \left(\prod_{i} x_{i}\right)^{\frac{1}{n}}$ (geometric mean),
- ▶ $\textbf{x} \to \infty_{\textbf{x} \notin \mathcal{C}}$, where \mathcal{C} is a convex set,
- ▶ $X \rightarrow \log \det X$ over the set of definite positive matrices,
- $X \rightarrow \text{eigenvalue}_{\max}(X)$ over the set of symmetric matrices.

Convex Functions Calculus

Are convex:

- $\blacktriangleright \mathbf{x} \to f(\mathbf{x}) + g(\mathbf{x}),$
- $\blacktriangleright \ \textbf{\textit{x}} \to \lambda f(\textbf{\textit{x}}), \ \text{for} \ \lambda \geq 0,$
- $\blacktriangleright x \to f(Ax + b),$
- $\blacktriangleright \ \mathbf{x} \to sup_{\theta \in \Theta} f_{\theta}(\mathbf{x}),$

Composition rule. Assume:

- Functions v_i are convex, c_i concave, a_i affine,
- f convex, nondecreasing in each argument v_i , nonincreasing in each argument c_i . Then $\mathbf{x} \to f(v_1(\mathbf{x}), \ldots, c_1(\mathbf{x}), \ldots, a_1(\mathbf{x}), \ldots)$ is convex.

[Mnemonic: write second derivative. But still true if not differentiable.]

Prove that a Function is Convex in Practice

- Apply the definition (extremely rare),
- Compute the Hessian / second derivative (to be avoided if possible),
- ▶ Prove that any restriction to a line, i.e. $t \rightarrow f(\mathbf{x} + t\mathbf{v})$, is convex (sometimes),
- Apply the rules of the previous slide (laziest hence preferred method).

Sublevel Sets

If *f* is convex, then:

$$\mathcal{C}_{\alpha} = \{ \boldsymbol{x} \in \operatorname{\mathsf{dom}} f \mid f(\boldsymbol{x}) \leq \alpha \}$$

is convex.

 \Rightarrow Often used to prove that a set is convex.

Convex Sets

Convex Functions

Optimization

Optimality Conditions

Optimization Problem in the Standard Form

$$\begin{array}{ll} \text{minimize} & f(\boldsymbol{x}) \\ \text{subject to} & g_i(\boldsymbol{x}) \leq 0, \quad i = 1, \dots, r, \\ & h_j(\boldsymbol{x}) = 0, \quad j = 1, \dots, s. \end{array}$$

•
$$f(x)$$
: cost (e.g. in \$).

Example of an inequality constraint:

$$v_1x_1+v_2x_2-S\leq 0$$

where x_i in kg, v_i in m³.kg⁻¹ and S is the volume of my warehouse in m³.

 (Theoretical) remark: any equality constraint can be seen as two opposite inequality constraints.

$\begin{array}{ll} \mbox{minimize} & f(\textbf{\textit{x}}) \\ \mbox{subject to} & g_i(\textbf{\textit{x}}) \leq 0, & i = 1, \ldots, r, \\ & h_j(\textbf{\textit{x}}) = 0, & j = 1, \ldots, s. \end{array}$

A Bit of Vocabulary

$$\mathcal{D} = \operatorname{dom} f \cap \bigcap_{i} \operatorname{dom} g_{i} \cap \bigcap_{j} \operatorname{dom} h_{j}: \operatorname{domain} of the problem.$$

$$\mathcal{F} = \{ \mathbf{x} \in \mathcal{D} \mid \forall i, g_i(\mathbf{x}) \leq 0 \text{ and } \forall j, h_j(\mathbf{x}) = 0 \}$$
: set of *feasible points*.

$$p^* = \inf_{\mathbf{x} \in \mathcal{F}} f(\mathbf{x})$$
: optimal value of the problem.

▶
$$p^* = \infty$$
: the problem is *infeasible*, i.e. $\mathcal{F} = \emptyset$.

▶
$$p^* = -\infty$$
: the problem is *unbounded below*.

▶ *p*^{*} is finite:

- If $f(\mathbf{x}^*) = p^*$, then \mathbf{x}^* is an optimal point or solution.
- If no such x^* , then the optimal value p^* is not attained.

minimize	$f(\mathbf{x})$	
subject to	$g_i(\mathbf{x}) \leq 0,$	$i=1,\ldots,r,$
	$h_j(\mathbf{x}) = 0,$	$j=1,\ldots,s.$

Convex Optimization Problem

We say that the problem is convex if:

- f is convex,
- All g_i are convex,
- ▶ And all h_j are affine.

Motivation: this ensures that f restricted to \mathcal{F} is a convex function.

Then:

- ► Any local minimum is a global optimum, i.e. a solution.
- (Generally) efficient algorithms to find a solution.

minimize	$f(\mathbf{x})$	
subject to	$g_i(\mathbf{x}) \leq 0$,	$i=1,\ldots,r,$
	$h_j(\mathbf{x}) = 0,$	$j=1,\ldots,s.$

Lagrangian: Motivation We do not assume that the problem is convex.

The problem is equivalent to:

minimize
$$f(\mathbf{x}) + \sum_{i} \infty_{g_i(\mathbf{x}) > 0} + \sum_{j} \infty_{h_j(\mathbf{x}) \neq 0}$$
 $(\mathbf{x} \in D)$

Example with constraint $v_1x_1 + v_2x_2 - S \le 0$: using more than S has infinite cost, using less than S is costless (but does not generate an income).

Relaxation of the problem: fix a unit price $\lambda \ge 0$ (in $.m^{-3}$). Use more than S: buy space at price λ . Use less: sell the extra space at price λ .

minimize
$$f(\mathbf{x}) + \sum_{i} \lambda_{i} g_{i}(\mathbf{x}) + \sum_{j} \nu_{j} h_{j}(\mathbf{x})$$
 $(\mathbf{x} \in D)$

Optimization

minimize	$f(\mathbf{x})$	
subject to	$g_i(\mathbf{x}) \leq 0,$	$i=1,\ldots,r,$
	$h_j(\mathbf{x}) = 0,$	$j = 1, \ldots, s.$

Lagrangian and Dual Lagrangian

We do **not** assume that the problem is convex.

Lagrangian:

$$L(\boldsymbol{x},\boldsymbol{\lambda},\boldsymbol{\nu})=f(\boldsymbol{x})+\sum_{j}\lambda_{j}g_{j}(\boldsymbol{x})+\sum_{j}\nu_{j}h_{j}(\boldsymbol{x})$$

Dual Lagrangian:

$$\phi(\boldsymbol{\lambda},\boldsymbol{\nu}) = \inf_{\boldsymbol{x}\in\mathcal{D}} L(\boldsymbol{x},\boldsymbol{\lambda},\boldsymbol{\nu})$$

It is always concave (even if the original problem is not convex).

▶ It provides a *parametrized family of lower bounds* for *f*. Indeed, for any feasible *x* and any $\lambda \ge 0$ (and without any requirement on ν):

$$\phi(\boldsymbol{\lambda},\boldsymbol{\nu}) \leq L(\boldsymbol{x},\boldsymbol{\lambda},\boldsymbol{\nu}) = f(\boldsymbol{x}) + \sum_{i} \underbrace{\lambda_{i}g_{i}(\boldsymbol{x})}_{\leq 0} + \sum_{j} \nu_{j} \underbrace{h_{j}(\boldsymbol{x})}_{=0} \leq f(\boldsymbol{x}).$$

Dual Problem

We do **not** assume that the problem is convex.

We have $\phi(\lambda, \nu) \leq p^*$. To find the best lower bound, let us maximize ϕ . This is the dual problem:

maximize
$$\phi(\boldsymbol{\lambda}, \boldsymbol{\nu})$$

subject to $\lambda_i \geq 0$, $i = 1, \dots, r$.

This is a convex problem, hence (generally) convenient to solve, at least numerically.

Its optimal value is denoted by d^* . By construction, we have $d^* \le p^*$. Duality gap: $p^* - d^*$.

- If = 0: "strong duality" situation.
- If > 0: "weak duality" situation.

Slater's Conditions

 $\begin{array}{ll} \mbox{minimize} & f(\mathbf{x}) \\ \mbox{subject to} & g_i(\mathbf{x}) \leq 0, & i = 1, \dots, r, \\ & h_j(\mathbf{x}) = 0, & j = 1, \dots, s. \end{array} \\ L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\mathbf{x}) + \sum_i \lambda_i g_i(\mathbf{x}) + \sum_j \nu_j h_j(\mathbf{x}) \\ \phi(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_x L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \\ \mbox{maximize} & \phi(\boldsymbol{\lambda}, \boldsymbol{\nu}) \\ \mbox{subject to} & \lambda_i \geq 0, & i = 1, \dots, r. \end{array}$

lf:

- The primal problem is convex,
- And the constraints are "strictly feasible" (i.e. with strict inequalities), Then:

►
$$p^{\star} = d^{\star}$$
,

• If $p^* = d^* > -\infty$, then the dual optimum is attained, i.e. $\exists (\lambda^*, \nu^*)$ s.t. $\phi(\lambda^*, \nu^*) = d^* = p^*$.

Remark: for *affine* inequality constraint, the "strictness" condition can be dropped.

Geometric Interpretation: Set of Values

We do **not** assume that the problem is convex.

Example: only one constraint $g(\mathbf{x}) \leq 0$.

$$egin{aligned} \mathcal{G} &= \Big\{ ig(oldsymbol{x}), f(oldsymbol{x})ig) \mid oldsymbol{x} \in \mathcal{D} \Big\}. \ oldsymbol{p}^{\star} &= \inf\{t \mid (u,t) \in \mathcal{G} ext{ and } u \leq 0\}. \end{aligned}$$

$$egin{aligned} \phi(\lambda) &= \inf\{f(m{x}) + \lambda g(m{x}) \mid m{x} \in \mathcal{D}\} \ &= \inf\{\lambda u + t \mid (u, t) \in \mathcal{G}\} \ &= \sup\{b \mid orall (u, t) \in \mathcal{G}, \lambda u + t \geq b\} \end{aligned}$$

 $\Rightarrow \lambda u + t \ge \phi(\lambda) \text{ is a supporting}$ hyperplane of \mathcal{G} (of slope $-\lambda$).

$$\begin{array}{lll} \mbox{minimize} & f(\mathbf{x}) \\ \mbox{subject to} & g_i(\mathbf{x}) \leq 0, & i = 1, \dots, r, \\ & h_j(\mathbf{x}) = 0, & j = 1, \dots, s. \end{array} \\ L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\mathbf{x}) + \sum_i \lambda_i g_i(\mathbf{x}) + \sum_j \nu_j h_j(\mathbf{x}) \\ \phi(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_x L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \\ \mbox{maximize} & \phi(\boldsymbol{\lambda}, \boldsymbol{\nu}) \\ \mbox{subject to} & \lambda_i \geq 0, & i = 1, \dots, r. \end{array}$$

Geometric Interpretation: Epigraph variation

We do **not** assume that the problem is convex.

Example: only one constraint $g(\mathbf{x}) \leq 0$.

- $\begin{aligned} \mathcal{A} &= \big\{ (u,t) \mid \exists \pmb{x} \in \mathcal{D}, u \geq \pmb{g}(\pmb{x}), t \geq f(\pmb{x}) \big\} \\ &= \mathcal{G} \ \cup \text{ points that are worse.} \end{aligned}$
- $p^{\star} = \inf\{t \mid (0, t) \in \mathcal{A}\}.$

$$egin{aligned} \phi(\lambda) &= \inf\{f(m{x}) + \lambda g(m{x}) \mid m{x} \in \mathcal{D}\} \ &= \inf\{\lambda u + t \mid (u, t) \in \mathcal{A}\} \ &= \sup\{b \mid orall (u, t) \in \mathcal{A}, \lambda u + t \geq b\}. \end{aligned}$$

 $\Rightarrow \lambda u + t \ge \phi(\lambda) \text{ is a supporting}$ hyperplane of \mathcal{A} (of slope $-\lambda$).

$$\begin{array}{ll} \begin{array}{ll} \mbox{minimize} & f(\mathbf{x}) \\ \mbox{subject to} & g_i(\mathbf{x}) \leq 0, & i=1,\ldots,r, \\ & h_j(\mathbf{x}) = 0, & j=1,\ldots,s. \end{array} \\ L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\mathbf{x}) + \sum_i \lambda_i g_i(\mathbf{x}) + \sum_j \nu_j h_j(\mathbf{x}) \\ \phi(\boldsymbol{\lambda}, \boldsymbol{\nu}) = inf_{\boldsymbol{\lambda}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \\ \mbox{maximize} & \phi(\boldsymbol{\lambda}, \boldsymbol{\nu}) \\ \mbox{subject to} & \lambda_i \geq 0, \quad i=1,\ldots,r. \end{array}$$

Convex Problems: Why There is (Usually) Strong Duality

If the optimization problem is convex, then $\ensuremath{\mathcal{A}}$ is convex.

There is a separating hyperplane between \mathcal{A} and $\mathcal{B} = \{(0, t) \mid t < p^{\star}\}.$

[Here, constraints qualification such as Slater's conditions ensure that the hyperplane is not vertical.]

This hyperplane gives the good λ and $\phi(\lambda)$.

 $\begin{array}{ll} \mbox{minimize} & f(\mathbf{x}) \\ \mbox{subject to} & g_i(\mathbf{x}) \leq 0, & i = 1, \dots, r, \\ & h_j(\mathbf{x}) = 0, & j = 1, \dots, s. \\ \mbox{} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\mathbf{x}) + \sum_i \lambda_i g_i(\mathbf{x}) + \sum_j \nu_j h_j(\mathbf{x}) \\ \phi(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_x L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \\ \mbox{maximize} & \phi(\boldsymbol{\lambda}, \boldsymbol{\nu}) \\ \mbox{subject to} & \lambda_i \geq 0, & i = 1, \dots, r. \end{array}$

Example of Convex Problem Without Strong Duality

 $\begin{array}{ll} \text{minimize} & e^{-x} \\ \text{subject to} & x^2/y \leq 0 \\ \text{with } \mathcal{D} = \{(x,y) \mid y > 0\}. \end{array}$

This is a convex problem. Constraint means x = 0. N.B.: Slater's conditions are violated.

$$p^{\star} = 1$$

$$\phi(\lambda) = \inf_{x,y} e^{-x} + \lambda \frac{x^2}{y} = 0$$

$$d^{\star} = 0$$

$$\Rightarrow \text{ No strong duality.}$$

 $\begin{array}{lll} & \mbox{minimize} & f(\mathbf{x}) \\ & \mbox{subject to} & g_i(\mathbf{x}) \leq 0, & i = 1, \dots, r, \\ & h_j(\mathbf{x}) = 0, & j = 1, \dots, s. \\ & L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\mathbf{x}) + \sum_i \lambda_i g_i(\mathbf{x}) + \sum_j \nu_j h_j(\mathbf{x}) \\ & \phi(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\boldsymbol{\lambda}} L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \\ & \mbox{maximize} & \phi(\boldsymbol{\lambda}, \boldsymbol{\nu}) \\ & \mbox{subject to} & \lambda_i \geq 0, & i = 1, \dots, r. \end{array}$

Saddle-point interpretation

We do **not** assume that the problem is convex.

$$\begin{split} \sup_{\boldsymbol{\lambda} \ge 0, \boldsymbol{\nu}} \mathcal{L}(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) &= \sup_{\boldsymbol{\lambda} \ge 0, \boldsymbol{\nu}} \left(f(\boldsymbol{x}) + \sum_{i} \lambda_{i} g_{i}(\boldsymbol{x}) + \sum_{j} \nu_{j} h_{j}(\boldsymbol{x}) \right) \\ &= \left| \begin{array}{c} f(\boldsymbol{x}) \text{ if } \boldsymbol{x} \in \mathcal{F}, \\ \infty \text{ otherwise.} \end{array} \right. \end{split}$$

$$\begin{array}{ll} \begin{array}{ll} \mbox{minimize} & f(\mathbf{x}) \\ \mbox{subject to} & g_i(\mathbf{x}) \leq 0, & i=1,\ldots,r, \\ & h_j(\mathbf{x}) = 0, & j=1,\ldots,s. \end{array} \\ L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\mathbf{x}) + \sum_i \lambda_i g_i(\mathbf{x}) + \sum_j \nu_j h_j(\mathbf{x}) \\ \phi(\boldsymbol{\lambda}, \boldsymbol{\nu}) = inf_x L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \\ \mbox{maximize} & \phi(\boldsymbol{\lambda}, \boldsymbol{\nu}) \\ \mbox{subject to} & \lambda_i \geq 0, \quad i=1,\ldots,r. \end{array}$$

$$\Rightarrow \rho^{\star} = \inf_{\boldsymbol{x}\in\mathcal{D}} \sup_{\boldsymbol{\lambda}\geq 0, \boldsymbol{
u}} L(\boldsymbol{x}, \boldsymbol{\lambda}, \boldsymbol{
u}).$$

And by definition: $d^{\star} = \sup_{\lambda \geq 0, \nu} \inf_{\mathbf{x} \in \mathcal{D}} L(\mathbf{x}, \lambda, \nu).$

Hence weak duality is simply a particular case of the max-min inequality: $\sup_{y} \inf_{x} f(x, y) \leq \inf_{x} \sup_{y} f(x, y)$. And:

 $(\textbf{\textit{x}},(\boldsymbol{\lambda},\boldsymbol{\nu})) \text{ saddle-point of } L \Leftrightarrow \textbf{\textit{x}} = \textbf{\textit{x}}^{\star}, \boldsymbol{\lambda} = \boldsymbol{\lambda}^{\star}, \boldsymbol{\nu} = \boldsymbol{\nu}^{\star} \text{ and } L(\textbf{\textit{x}},\boldsymbol{\lambda},\boldsymbol{\nu}) = p^{\star} = d^{\star}.$

Convex Sets

Convex Functions

Optimization

Optimality Conditions

Complementary slackness

We do **not** assume that the problem is convex.

 $\begin{array}{ll} \mbox{minimize} & f(\mathbf{x}) \\ \mbox{subject to} & g_i(\mathbf{x}) \leq 0, \quad i = 1, \dots, r, \\ & h_j(\mathbf{x}) = 0, \quad j = 1, \dots, s. \end{array} \\ L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\mathbf{x}) + \sum_i \lambda_i g_i(\mathbf{x}) + \sum_j \nu_j h_j(\mathbf{x}) \\ \phi(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_x L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \\ \mbox{maximize} & \phi(\boldsymbol{\lambda}, \boldsymbol{\nu}) \\ \mbox{subject to} & \lambda_i \geq 0, \quad i = 1, \dots, r. \end{array}$

Assume strong duality: $d^* = p^*$. Assume these optimal values are reached at (λ^*, ν^*) and \mathbf{x}^* respectively. Then all the following inequalities are in fact equalities:

$$\phi(\boldsymbol{\lambda}^{\star}, \boldsymbol{\nu}^{\star}) \leq L(\boldsymbol{x}^{\star}, \boldsymbol{\lambda}^{\star}, \boldsymbol{\nu}^{\star}) = f(\boldsymbol{x}^{\star}) + \sum_{i} \underbrace{\lambda_{i}^{\star} g_{i}(\boldsymbol{x}^{\star})}_{\leq 0} + \sum_{j} \nu_{j}^{\star} \underbrace{h_{j}(\boldsymbol{x}^{\star})}_{=0} \leq f(\boldsymbol{x}^{\star}).$$

Hence:

►
$$L(\mathbf{x}^{\star}, \mathbf{\lambda}^{\star}, \mathbf{\nu}^{\star}) = f(\mathbf{x}^{\star}) = \phi(\mathbf{\lambda}^{\star}, \mathbf{\nu}^{\star}),$$

► $\forall i, \lambda_i^{\star} g_i(\mathbf{x}^{\star}) = 0$ (complementary slackness). I.e. $\lambda_i^{\star} = 0$ or $g_i(\mathbf{x}^{\star}) = 0.$

Karush-Kuhn Tucker conditions

We do **not** assume that the problem is convex.

We now assume that f, all g_i and all h_j are differentiable.

1. If
$$f(\mathbf{x}^*) = p^* = d^* = \phi(\lambda^*, \nu^*)$$
, then (KKT conditions):

►
$$\forall i, g_i(\mathbf{x}^*) \leq 0$$
 and $\forall j, h_j(\mathbf{x}^*) = 0$ (primal feasibility),

▶
$$\forall i, \lambda_i^{\star} \geq 0$$
 (dual feasibility),

►
$$\forall i, \lambda_i^* g_i(\mathbf{x}^*) = 0$$
 (complementary slackness).

2. If the problem is convex, then the converse is true.

3. If the problem is convex and satisfies Slater's conditions, then x^* is optimal iff there exists (λ^*, ν^*) that meets KKT conditions.

$$\begin{array}{lll} & \text{minimize} & f(\mathbf{x}) \\ & \text{subject to} & g_i(\mathbf{x}) \leq 0, & i = 1, \dots, r, \\ & h_j(\mathbf{x}) = 0, & j = 1, \dots, s. \end{array} \\ & \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\mathbf{x}) + \sum_i \lambda_i g_i(\mathbf{x}) + \sum_j \nu_j h_j(\mathbf{x}) \\ & \phi(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_{\boldsymbol{x}} \mathcal{L}(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \\ & \text{maximize} & \phi(\boldsymbol{\lambda}, \boldsymbol{\nu}) \\ & \text{subject to} & \lambda_i \geq 0, & i = 1, \dots, r. \end{array}$$

KKT: Geometric Interpretation (One Constraint)

minimize
$$f(\mathbf{x})$$
Example:subject to $g_1(\mathbf{x}) \leq 0$ $x_1 - x_2 \leq 0$

If x^* is in the interior:

 $\boldsymbol{\nabla} f(\boldsymbol{x}^{\star}) = \boldsymbol{0}$

KKT: Geometric Interpretation (One Constraint)

$$\begin{array}{lll} \mbox{minimize} & f({\pmb x}) & \mbox{Example:} \\ \mbox{subject to} & g_1({\pmb x}) \leq 0 & & x_1 - & x_2 \leq 0 \end{array}$$

If x^* is in the interior:

$$\boldsymbol{\nabla} f(\boldsymbol{x}^{\star}) = \boldsymbol{0}$$

If
$$x^*$$
 is on the frontier:

$$- oldsymbol{
abla} f(oldsymbol{x}^{\star}) = \lambda_1 oldsymbol{
abla} g_1(oldsymbol{x}^{\star}) \quad (ext{with } \lambda_1 \geq 0)$$

KKT: Geometric Interpretation (One Constraint)

$$\begin{array}{lll} \mbox{minimize} & f({\pmb x}) & \mbox{Example:} \\ \mbox{subject to} & g_1({\pmb x}) \leq 0 & & x_1 - & x_2 \leq 0 \end{array}$$

If \mathbf{x}^{\star} is in the interior:

$$\boldsymbol{\nabla} f(\boldsymbol{x}^{\star}) = \boldsymbol{0}$$

If \mathbf{x}^{\star} is on the frontier:

$$- oldsymbol{
abla} f(oldsymbol{x}^{\star}) = \lambda_1 oldsymbol{
abla} g_1(oldsymbol{x}^{\star}) \quad (ext{with } \lambda_1 \geq 0)$$

Anyway, the second condition is met. Moreover, if $\lambda_1 > 0$, then $g_1(\mathbf{x}) = 0$.

KKT: Geometric Interpretation (Several Constraints)

 $\begin{array}{ll} \text{minimize} & f({\pmb{x}}) \\ \text{subject to} & g_1({\pmb{x}}) \leq 0 \\ & g_2({\pmb{x}}) \leq 0 \end{array}$

 \mathbf{x}^{\star} interior: $\nabla f(\mathbf{x}^{\star}) = \mathbf{0}$. \mathbf{x}^{\star} on first frontier: $-\nabla f(\mathbf{x}^{\star}) = \lambda_1 \nabla g_1(\mathbf{x}^{\star})$. \mathbf{x}^{\star} on second frontier: $-\nabla f(\mathbf{x}^{\star}) = \lambda_2 \nabla g_2(\mathbf{x}^{\star})$.

KKT: Geometric Interpretation (Several Constraints)

 $\begin{array}{ll} \text{minimize} & f(\boldsymbol{x}) \\ \text{subject to} & g_1(\boldsymbol{x}) \leq 0 \\ & g_2(\boldsymbol{x}) \leq 0 \end{array}$

 \mathbf{x}^{\star} interior: $\nabla f(\mathbf{x}^{\star}) = \mathbf{0}$. \mathbf{x}^{\star} on first frontier: $-\nabla f(\mathbf{x}^{\star}) = \lambda_1 \nabla g_1(\mathbf{x}^{\star})$. \mathbf{x}^{\star} on second frontier: $-\nabla f(\mathbf{x}^{\star}) = \lambda_2 \nabla g_2(\mathbf{x}^{\star})$. If \mathbf{x}^{\star} is on the intersection of frontiers:

$$- \boldsymbol{\nabla} f(\boldsymbol{x}^{\star}) = \lambda_1 \boldsymbol{\nabla} g_1(\boldsymbol{x}^{\star}) + \lambda_2 \boldsymbol{\nabla} g_2(\boldsymbol{x}^{\star}) \quad (\text{with } \lambda_i \geq 0).$$

In all cases, the above condition is met. Moreover, if $\lambda_i > 0$, then $g_i(\mathbf{x}) = 0$. Example: $x_1 - x_2 < 0$ $-2x_1 + 0.25x_2 < 0$ X2 ∇g_2 χ́1

Sensitivity Analysis (Very Quickly)

$$\begin{array}{ll} \text{minimize} & f(\boldsymbol{x}) \\ \text{subject to} & g_i(\boldsymbol{x}) \leq u_i, \quad i = 1, \dots, r, \\ & h_j(\boldsymbol{x}) = v_j, \quad j = 1, \dots, s. \end{array}$$

Denote $p^*(\boldsymbol{u}, \boldsymbol{v})$ its optimal value.

If strong duality holds and if p^* is differentiable at (0, 0), then:

$$\lambda_i^{\star} = -\frac{\partial p^{\star}}{\partial u_i}(\mathbf{0},\mathbf{0}) \text{ and } \nu_i^{\star} = -\frac{\partial p^{\star}}{\partial v_i}(\mathbf{0},\mathbf{0}).$$

$$\begin{array}{lll} \mbox{minimize} & f(\mathbf{x}) \\ \mbox{subject to} & g_i(\mathbf{x}) \leq 0, & i = 1, \dots, r, \\ & h_j(\mathbf{x}) = 0, & j = 1, \dots, s. \end{array} \\ \mathcal{L}(\mathbf{x}, \mathbf{\lambda}, \boldsymbol{\nu}) = f(\mathbf{x}) + \sum_i \lambda_i g_i(\mathbf{x}) + \sum_j \nu_j h_j(\mathbf{x}) \\ & \phi(\mathbf{\lambda}, \boldsymbol{\nu}) = inf_x \mathcal{L}(\mathbf{x}, \mathbf{\lambda}, \boldsymbol{\nu}) \\ & \mbox{maximize} & \phi(\mathbf{\lambda}, \boldsymbol{\nu}) \\ & \mbox{subject to} & \lambda_i \geq 0, & i = 1, \dots, r. \end{array}$$

Take-aways

- $\begin{array}{lll} \mbox{minimize} & f(\mathbf{x}) \\ \mbox{subject to} & g_i(\mathbf{x}) \leq 0, & i = 1, \dots, r, \\ & h_j(\mathbf{x}) = 0, & j = 1, \dots, s. \end{array} \\ L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) = f(\mathbf{x}) + \sum_i \lambda_i g_i(\mathbf{x}) + \sum_j \nu_j h_j(\mathbf{x}) \\ \phi(\boldsymbol{\lambda}, \boldsymbol{\nu}) = \inf_x L(\mathbf{x}, \boldsymbol{\lambda}, \boldsymbol{\nu}) \\ \mbox{maximize} & \phi(\boldsymbol{\lambda}, \boldsymbol{\nu}) \\ \mbox{subject to} & \lambda_i \geq 0, & i = 1, \dots, r. \end{array}$
- The Lagrangian describes a *relaxation* of the problem with a *unit price* for each constraint (Lagrange multiplier).
- The dual Lagrangian provides a parametrized family of lower bounds for the primal problem.
- ▶ The **dual problem** is *always convex*, even if the primal problem is not.
- When the primal problem is convex, there is usually strong duality (with mild additional assumptions such as *Slater's conditions*).
- For differentiable problems, think of KKT conditions (*necessary* if there is strong duality, *sufficient* if the problem is convex).

Questions?

