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Sources
Book:
http://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

MOOC:
https://lagunita.stanford.edu/courses/Engineering/CVX101/Winter2014/about

I Theory: 8h40 + exercises.
I Convex sets,
I Convex functions,
I Convex optimization problems,
I Duality.

I Applications: 3h15 + exercises.
I Approximation and fitting, Statistical estimation, Geometric problems.

I Algorithms: 5h15 + exercises.
I Numerical linear algebra, Unconstrained minimization, Equality constrained

minimization, Interior point methods.
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Fundamental Idea
A convex set C can be fully described
by its supporting hyperplanes.

φλ = inf{λT x, x ∈ C}
= sup{φ | ∀x ∈ C,λT x ≥ φ}.

What is the dual space? Example:
I x1, x2 . . . in (say) kg,
I φ in (say) $,
I Then λ1, λ2, ... in $.kg−1.
⇒ It is a space of unit prices.
⇒ If the unit prices were λ, then each
bundle in C would cost at least φλ.

C

λT x ≥ φλ

λT x ≥ φ
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Separating Hyperplanes Theorem

If two convex sets do not intersect, then they can be separated by (at least)
a hyperplane.

C1 C2

H
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Convex Functions Rn → R

Definition:
I f

(
θx+(1−θ)y

)
≤ θf (x)+(1−θ)f (y)

I And dom f is a convex set.
I.e. the epigraph of f is a convex set.

epi f

x

f (x)

Concave: −f is convex. I.e. the hypograph of f is a convex set.

Affine ⇔ convex and concave.
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Convex Functions Rn → R: Differentiable Case

If differentiable:

f (y) ≥ f (x) +∇f (x)T (y − x).

⇒ First-order Taylor gives a global
underestimator.
⇒ For example, if ∇f (x) = 0. . .

x

f (x)

If differentiable twice: ∇2f (x) � 0 (the Hessian is semidefinite positive).
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Examples of Convex Functions

I Any norm on Rn,
I x → xTPx, where P is semidefinite positive,
I x → maxi(xi),
I x → log

∑
i exp(xi) (“LogSumExp”),

I x →
(∏

i xi
) 1

n (geometric mean),
I x →∞x /∈C , where C is a convex set,
I X → log detX over the set of definite positive matrices,
I X → eigenvaluemax(X ) over the set of symmetric matrices.
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Convex Functions Calculus
Are convex:
I x → f (x) + g(x),
I x → λf (x), for λ ≥ 0,
I x → f (Ax + b),
I x → supθ∈Θfθ(x), f1(x) f2(x)

sup
(
f1(x), f2(x)

)

x
Composition rule. Assume:
I Functions vi are convex, ci concave, ai affine,
I f convex, nondecreasing in each argument vi , nonincreasing in each argument ci .

Then x → f
(
v1(x), . . . , c1(x), . . . , a1(x), . . .

)
is convex.

[Mnemonic: write second derivative. But still true if not differentiable.]
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Prove that a Function is Convex in Practice

I Apply the definition (extremely rare),
I Compute the Hessian / second derivative (to be avoided if possible),
I Prove that any restriction to a line, i.e. t → f (x + tv), is convex (sometimes),
I Apply the rules of the previous slide (laziest hence preferred method).
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Sublevel Sets

If f is convex, then:

Cα = {x ∈ dom f | f (x) ≤ α}

is convex.
⇒ Often used to prove that a set is convex.

α

Cα
x

f (x)
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Optimization Problem in the Standard Form

minimize f (x)
subject to gi(x) ≤ 0, i = 1, . . . , r ,

hj(x) = 0, j = 1, . . . , s.

I f (x): cost (e.g. in $).
I Example of an inequality constraint:

v1x1 + v2x2 − S ≤ 0

where xi in kg, vi in m3.kg−1 and S is the volume of my warehouse in m3.
I (Theoretical) remark: any equality constraint can be seen as two opposite

inequality constraints.
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A Bit of Vocabulary
minimize f (x)
subject to gi (x) ≤ 0, i = 1, . . . , r,

hj (x) = 0, j = 1, . . . , s.

D = dom f ∩
⋂

i
dom gi ∩

⋂
j

dom hj : domain of the problem.

F = {x ∈ D | ∀i , gi(x) ≤ 0 and ∀j , hj(x) = 0}: set of feasible points.

p? = inf
x∈F

f (x): optimal value of the problem.

I p? =∞: the problem is infeasible, i.e. F = ∅.
I p? = −∞: the problem is unbounded below.
I p? is finite:

I If f (x?) = p?, then x? is an optimal point or solution.
I If no such x?, then the optimal value p? is not attained.
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Convex Optimization Problem
minimize f (x)
subject to gi (x) ≤ 0, i = 1, . . . , r,

hj (x) = 0, j = 1, . . . , s.

We say that the problem is convex if:
I f is convex,
I All gi are convex,
I And all hj are affine.

Motivation: this ensures that f restricted to F is a convex function.

Then:
I Any local minimum is a global optimum, i.e. a solution.
I (Generally) efficient algorithms to find a solution.
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Lagrangian: Motivation
We do not assume that the problem is convex.

minimize f (x)
subject to gi (x) ≤ 0, i = 1, . . . , r,

hj (x) = 0, j = 1, . . . , s.

The problem is equivalent to:

minimize f (x) +
∑

i
∞gi (x)>0 +

∑
j
∞hj (x)6=0 (x ∈ D)

Example with constraint v1x1 + v2x2 − S ≤ 0: using more than S has infinite cost,
using less than S is costless (but does not generate an income).

Relaxation of the problem: fix a unit price λ ≥ 0 (in $.m−3). Use more than S: buy
space at price λ. Use less: sell the extra space at price λ.

minimize f (x) +
∑

i
λigi(x) +

∑
j
νjhj(x) (x ∈ D)
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Lagrangian and Dual Lagrangian
We do not assume that the problem is convex.

minimize f (x)
subject to gi (x) ≤ 0, i = 1, . . . , r,

hj (x) = 0, j = 1, . . . , s.

Lagrangian:
L(x,λ,ν) = f (x) +

∑
i
λigi(x) +

∑
j
νjhj(x)

Dual Lagrangian:
φ(λ,ν) = inf

x∈D
L(x,λ,ν)

I It is always concave (even if the original problem is not convex).
I It provides a parametrized family of lower bounds for f . Indeed, for any feasible x

and any λ ≥ 0 (and without any requirement on ν):
φ(λ,ν) ≤ L(x,λ,ν) = f (x) +

∑
i
λigi(x)︸ ︷︷ ︸
≤0

+
∑

j
νj hj(x)︸ ︷︷ ︸

=0

≤ f (x).
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Dual Problem
We do not assume that the problem is convex.

minimize f (x)
subject to gi (x) ≤ 0, i = 1, . . . , r,

hj (x) = 0, j = 1, . . . , s.

L(x,λ, ν) = f (x) +
∑

i λi gi (x) +
∑

j νj hj (x)

φ(λ, ν) = infx L(x,λ, ν)

We have φ(λ,ν) ≤ p?. To find the best lower bound, let us maximize φ. This is the
dual problem:

maximize φ(λ,ν)
subject to λi ≥ 0, i = 1, . . . , r .

This is a convex problem, hence (generally) convenient to solve, at least numerically.

Its optimal value is denoted by d?. By construction, we have d? ≤ p?.
Duality gap: p? − d?.
I If = 0: “strong duality” situation.
I If > 0: “weak duality” situation.
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Slater’s Conditions
minimize f (x)
subject to gi (x) ≤ 0, i = 1, . . . , r,

hj (x) = 0, j = 1, . . . , s.

L(x,λ, ν) = f (x) +
∑

i λi gi (x) +
∑

j νj hj (x)

φ(λ, ν) = infx L(x,λ, ν)

maximize φ(λ, ν)
subject to λi ≥ 0, i = 1, . . . , r.

If:
I The primal problem is convex,
I And the constraints are “strictly feasible” (i.e. with strict inequalities),

Then:
I p? = d?,
I If p? = d? > −∞, then the dual optimum is attained, i.e. ∃(λ?,ν?) s.t.
φ(λ?,ν?) = d? = p?.

Remark: for affine inequality constraint, the “strictness” condition can be dropped.
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Geometric Interpretation: Set of Values
We do not assume that the problem is convex.

minimize f (x)
subject to gi (x) ≤ 0, i = 1, . . . , r,

hj (x) = 0, j = 1, . . . , s.

L(x,λ, ν) = f (x) +
∑

i λi gi (x) +
∑

j νj hj (x)

φ(λ, ν) = infx L(x,λ, ν)

maximize φ(λ, ν)
subject to λi ≥ 0, i = 1, . . . , r.Example: only one constraint g(x) ≤ 0.

G =
{(

g(x), f (x)
)
| x ∈ D

}
.

p? = inf{t | (u, t) ∈ G and u ≤ 0}.

φ(λ) = inf{f (x) + λg(x) | x ∈ D}
= inf{λu + t | (u, t) ∈ G}
= sup{b | ∀(u, t) ∈ G, λu + t ≥ b}.

⇒ λu + t ≥ φ(λ) is a supporting
hyperplane of G (of slope −λ).

λ2u + t = φ(λ2)

λ?u + t = φ(λ?)

λ1u + t = φ(λ1)

Optimization 22/34



Geometric Interpretation: Epigraph variation
We do not assume that the problem is convex.

minimize f (x)
subject to gi (x) ≤ 0, i = 1, . . . , r,

hj (x) = 0, j = 1, . . . , s.

L(x,λ, ν) = f (x) +
∑

i λi gi (x) +
∑

j νj hj (x)

φ(λ, ν) = infx L(x,λ, ν)

maximize φ(λ, ν)
subject to λi ≥ 0, i = 1, . . . , r.Example: only one constraint g(x) ≤ 0.

A =
{
(u, t) | ∃x ∈ D, u ≥ g(x), t ≥ f (x)

}
= G ∪ points that are worse.

p? = inf{t | (0, t) ∈ A}.

φ(λ) = inf{f (x) + λg(x) | x ∈ D}
= inf{λu + t | (u, t) ∈ A}
= sup{b | ∀(u, t) ∈ A, λu + t ≥ b}.

⇒ λu + t ≥ φ(λ) is a supporting
hyperplane of A (of slope −λ).

λu + t = φ(λ)
(0, p?)

(0, φ(λ))
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Convex Problems:
Why There is (Usually) Strong Duality

minimize f (x)
subject to gi (x) ≤ 0, i = 1, . . . , r,

hj (x) = 0, j = 1, . . . , s.

L(x,λ, ν) = f (x) +
∑

i λi gi (x) +
∑

j νj hj (x)

φ(λ, ν) = infx L(x,λ, ν)

maximize φ(λ, ν)
subject to λi ≥ 0, i = 1, . . . , r.

If the optimization problem is convex, then
A is convex.
There is a separating hyperplane between
A and B = {(0, t) | t < p?}.

[Here, constraints qualification such as
Slater’s conditions ensure that the
hyperplane is not vertical.]

This hyperplane gives the good λ and φ(λ).
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Example of Convex Problem Without
Strong Duality

minimize f (x)
subject to gi (x) ≤ 0, i = 1, . . . , r,

hj (x) = 0, j = 1, . . . , s.

L(x,λ, ν) = f (x) +
∑

i λi gi (x) +
∑

j νj hj (x)

φ(λ, ν) = infx L(x,λ, ν)

maximize φ(λ, ν)
subject to λi ≥ 0, i = 1, . . . , r.

minimize e−x

subject to x2/y ≤ 0
with D = {(x , y) | y > 0}.

This is a convex problem.
Constraint means x = 0.
N.B.: Slater’s conditions are violated.

p? = 1
φ(λ) = infx ,y e−x + λ x2

y = 0
d? = 0
⇒ No strong duality.

p?

g

f y = 1
y = 4
y = 16
y = 64
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Saddle-point interpretation
We do not assume that the problem is convex.

minimize f (x)
subject to gi (x) ≤ 0, i = 1, . . . , r,

hj (x) = 0, j = 1, . . . , s.

L(x,λ, ν) = f (x) +
∑

i λi gi (x) +
∑

j νj hj (x)

φ(λ, ν) = infx L(x,λ, ν)

maximize φ(λ, ν)
subject to λi ≥ 0, i = 1, . . . , r.sup

λ≥0,ν
L(x,λ,ν) = sup

λ≥0,ν

(
f (x) +

∑
i
λigi(x) +

∑
j
νjhj(x)

)
=

∣∣∣∣ f (x) if x ∈ F ,
∞ otherwise.

⇒ p? = inf
x∈D

sup
λ≥0,ν

L(x,λ,ν).

And by definition: d? = sup
λ≥0,ν

inf
x∈D

L(x,λ,ν).

Hence weak duality is simply a particular case of the max-min inequality:
supy infx f (x , y) ≤ infx supy f (x , y). And:

(x, (λ,ν)) saddle-point of L ⇔ x = x?,λ = λ?,ν = ν? and L(x,λ,ν) = p? = d?.
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Complementary slackness
We do not assume that the problem is convex.

minimize f (x)
subject to gi (x) ≤ 0, i = 1, . . . , r,

hj (x) = 0, j = 1, . . . , s.

L(x,λ, ν) = f (x) +
∑

i λi gi (x) +
∑

j νj hj (x)

φ(λ, ν) = infx L(x,λ, ν)

maximize φ(λ, ν)
subject to λi ≥ 0, i = 1, . . . , r.

Assume strong duality: d? = p?. Assume these optimal values are reached at (λ?,ν?)
and x? respectively. Then all the following inequalities are in fact equalities:

φ(λ?,ν?) ≤ L(x?,λ?,ν?) = f (x?) +
∑

i
λ?i gi(x?)︸ ︷︷ ︸
≤0

+
∑

j
ν?j hj(x?)︸ ︷︷ ︸

=0

≤ f (x?).

Hence:
I L(x?,λ?,ν?) = f (x?) = φ(λ?,ν?),
I ∀i , λ?i gi(x?) = 0 (complementary slackness). I.e. λ?i = 0 or gi(x?) = 0.
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Karush-Kuhn Tucker conditions
We do not assume that the problem is convex.

minimize f (x)
subject to gi (x) ≤ 0, i = 1, . . . , r,

hj (x) = 0, j = 1, . . . , s.

L(x,λ, ν) = f (x) +
∑

i λi gi (x) +
∑

j νj hj (x)

φ(λ, ν) = infx L(x,λ, ν)

maximize φ(λ, ν)
subject to λi ≥ 0, i = 1, . . . , r.

We now assume that f , all gi and all hj are differentiable.

1. If f (x?) = p? = d? = φ(λ?,ν?), then (KKT conditions):
I ∇xL(x?,λ?,ν?) = 0,
I ∀i , gi(x?) ≤ 0 and ∀j , hj(x?) = 0 (primal feasibility),
I ∀i , λ?i ≥ 0 (dual feasibility),
I ∀i , λ?i gi(x?) = 0 (complementary slackness).

2. If the problem is convex, then the converse is true.

3. If the problem is convex and satisfies Slater’s conditions, then x? is optimal iff there
exists (λ?,ν?) that meets KKT conditions.
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KKT: Geometric Interpretation (One Constraint)
minimize f (x)
subject to g1(x) ≤ 0

Example:
x1 − x2 ≤ 0

−2x1 + 0.25x2 ≤ 0

If x? is in the interior:

∇f (x?) = 0

If x? is on the frontier:

−∇f (x?) = λ1∇g1(x?) (with λ1 ≥ 0)

Anyway, the second condition is met.
Moreover, if λ1 > 0, then g1(x) = 0.

x1

x2
x?

∇g1

−∇f

x?
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KKT: Geometric Interpretation (Several Constraints)
minimize f (x)
subject to g1(x) ≤ 0

g2(x) ≤ 0

Example:
x1 − x2 ≤ 0

−2x1 + 0.25x2 ≤ 0

x? interior: ∇f (x?) = 0.
x? on first frontier: −∇f (x?) = λ1∇g1(x?).
x? on second frontier: −∇f (x?) = λ2∇g2(x?).

If x? is on the intersection of frontiers:

−∇f (x?) = λ1∇g1(x?)+λ2∇g2(x?) (with λi ≥ 0).

In all cases, the above condition is met.
Moreover, if λi > 0, then gi(x) = 0.

x1

x2

∇g1

∇g2
x?
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Sensitivity Analysis (Very Quickly)
minimize f (x)
subject to gi (x) ≤ 0, i = 1, . . . , r,

hj (x) = 0, j = 1, . . . , s.

L(x,λ, ν) = f (x) +
∑

i λi gi (x) +
∑

j νj hj (x)

φ(λ, ν) = infx L(x,λ, ν)

maximize φ(λ, ν)
subject to λi ≥ 0, i = 1, . . . , r.

Consider a perturbed problem:

minimize f (x)
subject to gi(x) ≤ ui , i = 1, . . . , r ,

hj(x) = vj , j = 1, . . . , s.

Denote p?(u, v) its optimal value.
If strong duality holds and if p? is differentiable at (0, 0), then:

λ?i = −∂p
?

∂ui
(0, 0) and ν?i = −∂p

?

∂vi
(0, 0).
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Take-aways
minimize f (x)
subject to gi (x) ≤ 0, i = 1, . . . , r,

hj (x) = 0, j = 1, . . . , s.

L(x,λ, ν) = f (x) +
∑

i λi gi (x) +
∑

j νj hj (x)

φ(λ, ν) = infx L(x,λ, ν)

maximize φ(λ, ν)
subject to λi ≥ 0, i = 1, . . . , r.

I The Lagrangian describes a relaxation of the problem with a unit price for each
constraint (Lagrange multiplier).

I The dual Lagrangian provides a parametrized family of lower bounds for the
primal problem.

I The dual problem is always convex, even if the primal problem is not.
I When the primal problem is convex, there is usually strong duality (with mild

additional assumptions such as Slater’s conditions).
I For differentiable problems, think of KKT conditions (necessary if there is strong

duality, sufficient if the problem is convex).
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Thank you!

Questions?
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